

Evaluation of Radar Derived Surface Rainfall Estimates for Improvement of TRMM Ground Validation Products

by

Biswadev Roy

MSEE Thesis Defense - Fall 2000

Major Professor: W. Linwood Jones

November 13, 2000

OBJECTIVES

- Evaluate TRMM Ground Validation techniques using NEXRAD radar data
 - Refine procedures for calculating radar to rain gauge accumulation ratio for Melbourne, FL
 - Perform error analysis
 - Evaluate geophysical performance July 1998
 - Evaluate empirical relations for drop terminal velocity and compare UHF profiler reflectivity with impact disdrometer reflectivity
 - suggest suitable relation,
 - study variation of non-dimensional (n.d.)reflectivity with n.d. speeds

Meteorological Radar

$$Z(mm^6m^{-3}) = \int_0^\infty N(D)D^6dD$$
 [Z (dBZ)= 10Log₁₀Z]

- -- Radar operates continuously typical 7500 volume scans (VOS), approx. 98% useful
- -- Radar inoperative: 1,000 1,500 minutes/month

25.5N, 82.5W

42 of 89 Gauges selected using AQC test

(15 - 99 km range)

SUMMARY OF RESULTS

GV validation using July 1998 Melbourne NEXRAD measurements

- Combined Z-R developed
 - 42 AQC gauge locations and center radar pixel accumulations
 - 97 % radar operative and 19.6% time rainfall within radar mask
- GVS algorithmic problems discovered
 - extraction procedure and L3 accumulation routine
- Software fixed and proper operation verified

RESULTS - cont.

Improvements in radar/gauge bulk monthly accumulation ratio

- After *proper extraction*, ratio improves from 0.83 to 0.886 (5.6%)
- Sub-setting the AQC gauge accumulation for radar "down" periods, bulk ratio becomes 1.018 (radar overestimation by 1.8%)
- Overestimation reduced using CAPPI-PPI *Planar mismatch* for 4.36% yielding bulk ratio of 0.974
- Bulk ratio becomes 0.98 after applying *temporal* smoothing (0.64% better)

Improvements - cont.

- Hourly accumulation scheme applied to instantaneous accumulations (rms 0.24 mm), bulk ratio with planar adjustment ~0.952 improves to 0.992 after temporal smoothing
- Daily accumulations show larger scatter in the second half of month
- Instantaneous reflectivity rms error ~ 5 12 dBZ peak at 80 km

Improvements - cont.

UHF Profiler reflectivity *compares* well with impact disdrometer (RD-69) reflectivity data while using Best (1950) drop terminal fall speed relation

• Non-dimensional ratio of UHF Doppler speed to Spectrum width peaks when ratio of Z(UHF) to Z(RD-69) becomes unity