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Presentation Outline

• Dissertation Objective

• Background

– Brief history of wind observation from space

– Planck’s Blackbody radiation

– Passive microwave measurement

– Active microwave measurement

• ADEOS-II satellite

– AMSR  brightness temperature

– SeaWinds scatterometer  wind vector

• Dataset collocation
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Presentation Outline  -2

• Atmospheric independence

• Passive wind vector model function

– AV-H

– Model variance

• Model function application

– Combined passive and fore-look scatterometer for 
wind direction retrieval

• Conclusion

• List of Publications
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Dissertation Objective

• To characterize the passive wind direction 
signature for vertical and horizontal 
polarizations

– Develop passive wind vector model function

• Secondary objective

– To evaluate combined passive and active wind 
direction retrieval
• Fore-look scatterometer



Background
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Why measure ocean vector wind?

• Ocean circulation science

• Weather forecasting

• Long-term global climate change science

• Ship routing

• Coastal flooding

• Oil production

• Fishing production
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Wind observation satellite missions
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Wind measurement technology

• Active Microwave

– SASS (Seasat)

– AMI (ERS-1,2)

– NSCAT (ADEOS-I)

– SeaWinds (QuikSCAT, 
ADEOS-II)

– ASCAT (MetOp-A)

• Normalized radar cross-
section (NRSC) or 
sigma-0 (0) 
measurement

• Passive Microwave

– WindSat (Coriolis) 

• Polarimetric system

– 3rd and 4th Stokes 

parameter

– New System

• Require only linear 

polarization (V and H)
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radio

infrared

visible X-ray and 

Ultraviolet

Microwave


S f 
2hf 3

c 2

1

ehf / kT 1











Planck’s Blackbody Radiation

k = Boltzmann’s constant

= 1.38  10-23 J/K

h = Plank’s constant

= 6.63  10-34 J 

c = light speed = 3  108 m/s

f = EM frequency, Hz

T = absolute temperature, K  
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Rayleigh-Jeans Law



S f 
2f 2kT

c2


2kT

2

Given hf/kT << 1

e hf/kT-1  hf/kT

Microwave


S f 
2hf 3

c 2

1

ehf / kT 1











,Watts/m2/Hz
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Radiometer Antenna

emission



Pt 
2kT

2
IFOV



Pr  Pt
2

4R2
Aeff




IFOV

R2



Aeff 
2

p

(Friss transmission)
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Radiometer received power

• Power density at the radiometer antenna

• Power received by the radiometer with system 
bandwidth B



Pr  kT ,Watts/Hz



Pr  kTB ,Watts
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Brightness Temperature

• For non-blackbody, the equivalent radiometric blackbody 

temperature defined as

• Received power becomes



TB  ETphy
E = emissivity

TB = brightness temperature

Tphy = physical temperature of the target



Pr  kTBB



Radiative Transfer Model (RTM)



z = S

z = 0

= 2.7 K
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Ocean Brightness Temperature

• Power emitted and reflected from ocean 

surface is strongly polarized

• Emissivity is depend of the air/sea boundary 

power reflection coefficient



E  1 R  1 
2



V  
 r cos   r  sin2

 r cos   r  sin2















H  
cos  r  sin2

cos  r  sin2















r = dielectric constant

of sea water



TB  E  SST

SST = sea surface temperature
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Atmospheric brightness temp.

• Atmospheric emission is isotropic and non-

polarized

• Emissivity characterize by atmospheric absorption 

coefficient, (z), Neper/m (assume non-scattering)



TBU  (z)T(z)(z ,S)dz
0





TBD  (z)T(z)(0,z )dz
0






(z1,z2 ) exp  (z)dz
z1

z2












= atmospheric 

transmissivity

T(z) = atmospheric physical

temperature profile
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Atmospheric brightness temp. -2

• Special case for homogeneous atmosphere

• Up-welling and down-welling brightness temp is 

approximated:

T(z)  T = constant

(z)   = constant



  (0,S)  eS



TBU  TBD   T  ezdz
0

S

  (1 eS )T



TBU TBD  (1)T
= total atmospheric 

transmissivity
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Apparent brightness temperature

• Total brightness temperature “seen” by 

radiometer antenna:

  



TAP  TBU
upwelling
component

{
 R(1)(TBD  TC )

scattering
component

1 2 4 4 4 3 4 4 4 
 E  SST

surface
component

1 2 4 3 4 

= roughen surface scattering 

factor due to wind speed



19

Radiometer System

PA= kTBB

Tsys = TB+Trec

Psys =PA+Prec=kTsysB

<Vout> = GsPsys

= GskTsysB

Tcal

V
o

u
t



Tsys 
Tsys

B
measurement 

standard deviation
=

Square Law

Detector

Low-Pass

Filter
+

Receiver

Noise

Noise-free receiver

Gain=G

Bandwidth=B

Lossless

Antenna Vout

Prec

Psys

Vd

Receiver
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Scatteromery

• Scatterometer is a radar instrument designed 
primarily to measure ocean vector wind (speed 
and direction)

• Backscatter signal is relatively insensitive to the 
atmosphere except for present of rain

• Basic Radar Equation:



Pr 
PtG

22

(4 )3R4




Pr 
2

(4)3

PtG
2 0dA

R4  = radar cross-section



 0 
 i
Ai

= normalized radar cross-section (NRSC)



21

Geophysical Model Function

• Empirical relationship between 0 and wind vector 
is known as GMF

• GMF may be modeled as two harmonic cosine 
functions

• GMF is also a function of incidence angle and 
observed polarization



 0 C0(wspd)C1(wspd)cos()C2(wspd)cos(2)
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Relative Wind Direction ()
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GMF for Scat V-Pol
(Co mean removed)

Relative Wind Direction
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GMF for Scat H-Pol
(Co mean removed)
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Retrieval Algorithm

• Scatterometer requires backscatter measurements 
from multiple direction (fore and aft) to resolve 
wind direction

• Retrieval algorithm is based on maximum 
likelihood estimation (MLE)

• Require nudging and median filtering to select a 
unique wind vector (known as direction ambiguity 
removal)

 
 i

0
GMF(wspd,) 

2

Variance
 i

0 (wspd,)
i


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ADEOS-II Satellite

• AMSR

– Dual-Polarization Multi-

frequency:

6.9, 10.7, 18.7, 23.8, 

36.5, 89.0 GHz

– incidence angle: 55

– Integration time: 2.6 ms

– Bandwidth: 

100-3000 MHz

• SeaWinds

– Dual-Polarization 

13.4 GHz, 110 W, 189 

PRF

– incidence angle: 

54 V-pol, 

46 H-pol

– 18 RPM

– Bandwidth: 250 kHz
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Measurement Geometry


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Satellite data product

• AMSR

– Overlay L2A 
product

• Brightness Temp. 
(TB): 10, 18, 37 
GHz

• Water vapor

• Cloud liquid water

• Rain

• SST

• SeaWinds

– L2A product

• Sigma-0

– L2B product

• Wind speed

• Wind direction

WVCWVC
1 2

43

1624

76

25 km

2
5
 k

m



Other required data

• AMSR azimuth

– Calculated from AMSR measurement geometry, 

scan radius (940 km) with WVC location

• Sea surface temperature (SST)
• NCEP’s Global Data Assimilation System (GDAS)

• Global map generated every 6 hr.

• 1  1 resolution

7574

12

11

13

7371 72

Flight

direction
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Data Match-Ups

• AMSR and SeaWinds data were automatically 
collocated

• GDAS’s SST match-up required additional work

– Four point interpolation surrounding AMSR WVC’s 
quadrants

• Average AMSR parameters into single WVC’s

• All data were match-up over entire mission period of 
Apr - Oct, 2003

• Filtered out rain and high cloud liquid water 
(<0.1mm) 
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Binned Data Scheme
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RTM Assumption

• Atmosphere is homogeneous: Temp. profile and 

absorption is constant

• Air/Sea temperature is the same: Effective 

temperature


TBU TBD  (1)T



T  SST  Teff



TBU TBD  (1)Teff
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RTM Assumption -2



upwelling TBU  (1)Teff Teff Teff

  



TAP  TBU
upwelling
component

{
 R(1)(TBD  TC )

scattering
component

1 2 4 4 4 3 4 4 4 
 E  SST

surface
component

1 2 4 3 4 



scattering  RTBD  RTBD  
2R(1)TC

                 R(1 )Teff  R(1 )Teff  
2R(1)TC

                 RTeff  
2RTeff  R(1 )Teff  

2R(1)TC



surface  E  SST  (1R) Teff  Teff RTeff



TAP Teff R
2Teff  R(1)Teff  R

2(1)TC



TAP  (1R 2) Teff

negligible
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Atmospheric cancellation

• The brightness temperature for vertical and horizontal 
polarization may represented as:

• Define a new parameter, A as a ratio of V and H-pol

• Changes in brightness temperature with respect to 
atmospheric transmissivity



TBV  (1 RV
2)Teff

TBH  (1 RH
2)Teff



A 
RH

RV



TBV 2RVTeff



TBH 2ARVTeff



(ATBV TBH )


 0
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“A” Parameter

• Linear combination of V and H brightness 
temperature is independent of atmosphere



ATBV TBH



A 
TBH Teff

TBV Teff

ATBV TBH  A(1 RV
2)Teff  (1 RH

2)Teff

                  (A 1)Teff  (ARV  RH ) 2Teff

0



Teff  SST
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“A” Parameter -2

• A parameter has 
Gaussian 
distribution

• A was found as a 
function of wind 
speed (wspd) and 
sea surface 
temperature (SST)

SST = 19 C
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A parameter for 10 GHz
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A parameter for 18 GHz
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A parameter for 37 GHz



Model Function Procedure

• ATBV-TBH (AV-H) was found as a function of 
wind speed, wind direction and SST

• AV-H is model as a linear sum of each 
components

• Wind directional signal modeled as two 
harmonic cosine function

  



ATBV TBH  F(SST)C0(WSPD)

dc

1 2 4 4 4 3 4 4 4 
C1(WSPD) COS()

                                              C2(WSPD) COS(2)



F(WDIR) C0(WSPD)C1(WSPD) COS()C2(WSPD) COS(2)
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AV-H for 10 GHz
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AV-H for 18 GHz
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AV-H for 37 GHz
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Procedure -2

• Assume sea surface is smooth: wind speed = 0 
m/s

• AV-H become a function of only SST

• This initial F(SST) found from extrapolation to 
zero wind speed values

• Appropriate function that best describes the 
measurement is found



ATBV TBH  F(SST)C0(WSPD)C1(WSPD) COS()

                                              C2(WSPD) COS(2)

0

0

0
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Initial F(SST)
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Procedure -3

• Subtract AV-H from initial F(SST).

• Remaining AV-H become a function of wind speed 
and direction

• Find regression to the measurement in the form:



(AV H)F(SST)  F(WDIR)



F(WDIR) C0(WSPD)C1(WSPD) COS()C2(WSPD) COS(2)
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First iteration F(WDIR)
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Procedure -4

• The C’s coefficient was found for discrete values of 
wind speed bin

• Regression fit was found for each of the C’s 
coefficient. F(WDIR) is found for all wind speed 
values.

• Iterative process has established



(AV H)F(WDIR)  F(SST)



Model Equations



ATBV TBH  F(SST)C0(WSPD)C1(WSPD) COS()

                                              C2(WSPD) COS(2)



Model Coefficients
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Model Function for 10 GHz
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Model Function for 18 GHz
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Model Function for 37 GHz
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Coefficient C1
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Coefficient C2
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Wind speed dependence dc
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SST dependence dc
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Model standard deviation

• Directional model standard deviation was found as a 
function of relative direction and wind speed

• Standard deviation was model the same way as the 
model function in the form

• Same regression process was repeated



STDC1(WSPD) COS()C2(WSPD) COS(2)
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Measurement Noise
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Standard deviation
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Standard deviation for Upwind

Mean = Std

9 m/s
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Wind Vector Retrieval

• Wind vectors are ideally retrievable using the 

model function for AV-H measurement and 

given SST

• Retrieval algorithm based on maximum 

likelihood estimation (MLE)



 
AVHMeas  AVHModel(wspd,rel.dir,SST) freq 

2

VarianceAVH (wspd,rel.dir) freqfreq10,18,37GHz


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Wind Vector Retrieval -2

• In practice measurements standard deviations 
are relatively high for wspd < 9 m/s 

• Wind retrieval from AV-H alone will not 
achieve required accuracy

• AV-H brightness may be combined with the 
other measurements to be able to retrieve wind 
vector  
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Combined Active/Passive retrieval

• Use favorable geometry measurements of AMSR’s 

TB and SeaWinds’ 0 on ADEOS-II

• Only fore-look 0 measurements were used

– Assess usability of AV-H model function

– Simplifies instrument design

• Adds two feed and electronics to multi-channel conical scanning 

radiometer

• Given SST available from GDAS, and known wind 

speed retrieved from SeaWinds scatterometer
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Wind speed transfer function
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Active/Passive Algorithm



 
AVHMeas  AVHModel(wspd,,SST) freq 

2

VarianceAVH (wspd,) freqfreq10,18,37GHz



                     
 0 GMF(wspd,)pol 

2

Variance 0
(wspd,)polpolV ,H





  azimuth direction
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Wind direction ambiguities

• Wind direction solution is not unique - caused by 
biharmonic nature of the model functions

• Wind direction solutions were kept up to four and 
ordered according to the inverse values of MLE

– i.e. 1st ranked solution corresponds to minimum MLE 
value, 2nd ranked is the second minimum, …

• Of these ambiguities, only one of the solutions is the 
“correct” wind direction
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Measurements residual

1st

101

2nd

188

3rd

323
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Wind Retrieval Comparison

Active/Passive Retrievals

• For best case scenario, ambiguities were compared to 
the known surface truth and the closest direction 
solution was selected

• GDAS was used as the surface truth (independent 
source)

Active fore-look

• Wind direction comparisons were also made for the 
“closest” solution retrieved without using passive 
AV-H measurements



Closest Ambiguity Comparison

GDAS direction

A
ct

iv
e/

P
as

si
v
e 

d
ir

ec
ti

o
n

5 m/s 9 m/s7 m/s

12 m/s 20 m/s15 m/s
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Closest solutions comparison

Closest Ambiguities: Standard Deviation Error Wind Speed 

(meter/sec) 
Number of Points 

Passive + fore-look Scat Only fore-look Scat 

5 337493 20.8 14.1 

7 441818 23.6 10.8 

9 309717 17.4 9.0 

12 99563 17.5 9.0 

15 33520 17.1 9.5 

20 1680 19.1 13.7 

 

Current scatterometer is capable of wind speed 

measurement of 3-20 m/s

- wind speed accuracy: 2 m/s

- wind direction accuracy: 20
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Instrument Skill

• The instrument skill is a metric to determine the 
performance of the wind ambiguity removal based 
upon ambiguity ranking

• The higher the probability that 1st ranked solutions 
are the closest solution, the greater the skill of the 
instrument

• Usually in four-look scatterometry, the 1st and 2nd

ranked solutions are the most probable closest wind 
vector
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Skill Comparison

Closest Ambiguity Ranking 

Passive + fore-look Scat Only fore-look Scat 
Wind Speed 

(meter/sec) 
1

st
 2

nd
 3

rd
 4

th
 1

st
 2

nd
 3

rd
 4

th
 

5 30 % 35 % 23 % 13 % 26 % 30 % 29 % 15 % 

7 30 % 34 % 23 % 13 % 22 % 27 % 32 % 18 % 

9 30 % 37 % 27 % 6 % 25 % 27 % 33 % 15 % 

12 61 % 28 % 10 % 1 % 50 % 30 % 13 % 7 % 

15 82 % 15 % 2 % 1 % 63 % 29 % 5 % 3 % 

20 91 % 9 % 0 % 0 % 69 % 25 % 2 % 4 % 
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Skill Comparison

Closest Ambiguity Ranking 

Passive + fore-look Scat Only fore-look Scat 
Wind Speed 

(meter/sec) 
1

st
 2

nd
 3

rd
 4

th
 1

st
 2

nd
 3

rd
 4

th
 

5 30 % 35 % 23 % 13 % 26 % 30 % 29 % 15 % 

7 30 % 34 % 23 % 13 % 22 % 27 % 32 % 18 % 

9 30 % 37 % 27 % 6 % 25 % 27 % 33 % 15 % 

12 61 % 28 % 10 % 1 % 50 % 30 % 13 % 7 % 

15 82 % 15 % 2 % 1 % 63 % 29 % 5 % 3 % 

20 91 % 9 % 0 % 0 % 69 % 25 % 2 % 4 % 
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Active/Passive Skill Improvement

Wind Speed 

(m/s)

Skill 

improvement 

(1st and 2nd rank 

combined)

Standard deviation

Only 

fore-look 

Scat

Passive + 

fore-look 

Scat

5 9 % 14.1  20.8 

7 15 % 10.8  23.6 

9 15 % 9.0  17.4 

12 9 % 9.0  17.5 

15 5 % 9.5  17.1 

20 6 % 13.7  19.1 
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Conclusion

• Linear combination of vertical and horizontal 
brightness temp. (AV-H) is a function of only surface 
parameters

– A is a f(Freq, pol, SST and wind speed) 

– Effects of atmosphere cancel

– Large DC bias is f(Freq, pol, SST and wind speed)

• Empirical relationship between AV-H and surface 
parameter is defined for wind vector and SST.
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Conclusion -2

• Measurement noise (deltaTb) dominantes over wind 

directional signal for wind speed < 9 m/s

– May prevent wind retrieval using passive measurement 

alone

• Combined active and passive has been investigated 

with fore-look geometry

– Closest ambiguity shows that retrieval achieves wind 

direction accuracy of < 20 

– However, wind direction accuracy degrades compared to 

closest fore-look active measurement alone

– But, instrument skill is higher (than using fore-look active 

measurement alone)
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