An Ocean Surface Wind Vector Model Function for a Spaceborne Microwave Radiometer and Its Application

Seubson Soisuvarn

Final Examination for the degree of Doctor of Philosophy in Electrical Engineering November 3, 2006

Presentation Outline

- Dissertation Objective
- Background
 - Brief history of wind observation from space
 - Planck's Blackbody radiation
 - Passive microwave measurement
 - Active microwave measurement
- ADEOS-II satellite
 - AMSR \rightarrow brightness temperature
 - SeaWinds scatterometer \rightarrow wind vector
- Dataset collocation

Presentation Outline -2

- Atmospheric independence
- Passive wind vector model function
 - -AV-H
 - Model variance
- Model function application
 - Combined passive and fore-look scatterometer for wind direction retrieval
- Conclusion
- List of Publications

Dissertation Objective

- To characterize the passive wind direction signature for vertical and horizontal polarizations
 - Develop passive wind vector model function
- Secondary objective
 - To evaluate combined passive and active wind direction retrieval
 - Fore-look scatterometer

Background

Why measure ocean vector wind?

- Ocean circulation science
- Weather forecasting
- Long-term global climate change science
- Ship routing
- Coastal flooding
- Oil production
- Fishing production

Wind observation satellite missions

Wind measurement technology

- Active Microwave
 - SASS (Seasat)
 - AMI (ERS-1,2)
 - NSCAT (ADEOS-I)
 - SeaWinds (QuikSCAT, ADEOS-II)
 - ASCAT (MetOp-A)
 - Normalized radar crosssection (NRSC) or sigma-0 (σ⁰) measurement

- Passive Microwave
 - WindSat (Coriolis)
 - Polarimetric system
 - 3rd and 4th Stokes parameter

- <u>New System</u>

• Require only linear polarization (V and H)

Planck's Blackbody Radiation

$$S_f = \frac{2\pi h f^3}{c^2} \left(\frac{1}{e^{hf/kT} - 1}\right)$$

- k = Boltzmann's constant = 1.38×10^{-23} J/K h = Plank's constant = 6.63×10^{-34} J
- $c = light speed = 3 \times 10^8 m/s$
- f = EM frequency, Hz T = absolute temperature, K

Rayleigh-Jeans Law

Radiometer Antenna

Radiometer received power

• Power density at the radiometer antenna

 $P_r = kT$, Watts/Hz

• Power received by the radiometer with system bandwidth B

 $P_r = kTB$, watts

Brightness Temperature

• For non-blackbody, the equivalent radiometric blackbody temperature defined as

$$T_B = ET_{phy}$$

$$\begin{split} E &= emissivity \\ T_B &= brightness temperature \\ T_{phy} &= physical temperature of the target \end{split}$$

• Received power becomes

$$P_r = kT_B B$$

Radiative Transfer Model (RTM)

Ocean Brightness Temperature

- Power emitted and reflected from ocean surface is strongly polarized
- Emissivity is depend of the air/sea boundary power reflection coefficient

$$E = 1 - R = 1 - |\rho|^2$$

$$T_B = E \cdot SST$$

$$\rho_{V} = -\left(\frac{\varepsilon_{r}\cos\theta - \sqrt{\varepsilon_{r} - \sin^{2}\theta}}{\varepsilon_{r}\cos\theta + \sqrt{\varepsilon_{r} - \sin^{2}\theta}}\right)$$
$$\rho_{H} = -\left(\frac{\cos\theta - \sqrt{\varepsilon_{r} - \sin^{2}\theta}}{\cos\theta + \sqrt{\varepsilon_{r} - \sin^{2}\theta}}\right)$$

SST = sea surface temperature

 ε_r = dielectric constant of sea water ε_1^{15}

Atmospheric brightness temp.

- Atmospheric emission is isotropic and nonpolarized
- Emissivity characterize by atmospheric absorption coefficient, $\alpha(z)$, Neper/m (assume non-scattering)

$$T_{BU} = \int_{0}^{\infty} \alpha(z) T(z) \tau(z, S) dz$$
$$T_{BD} = \int_{0}^{\infty} \alpha(z) T(z) \tau(0, z) dz$$

 $\tau(z_1, z_2) = \exp\left(-\int_{z_1}^{z_2} o(z) dz\right)$

= atmospheric transmissivity

T(z) = atmospheric physical temperature profile

Atmospheric brightness temp. -2

• Special case for homogeneous atmosphere

 $T(z) \approx T = \text{constant}$ $\alpha(z) \approx \alpha = \text{constant}$

• Up-welling and down-welling brightness temp is approximated:

$$T_{BU} = T_{BD} \approx \int_{0}^{\infty} \alpha \cdot T \cdot e^{-\alpha \cdot z} dz = (1 - e^{-\alpha \cdot S})T \qquad \tau = \tau(0, S) = e^{-\alpha \cdot S}$$

= total atmospheric transmissivity

$$T_{BU} = T_{BD} \approx (1 - \tau)T$$

Apparent brightness temperature

• Total brightness temperature "seen" by radiometer antenna:

$$T_{AP} = \underbrace{T_{BU}}_{upwelling} + \underbrace{T_{R}(1 + 2)}_{upwelling} \underbrace{T_{R}(1 + 2)}_{scattering} \underbrace{T_{R}(1 + 2)}_{component} \underbrace{T_{R}(1 + 2)}_{scattering} \underbrace{T_{R}(1 + 2)}_{surface} \underbrace{T_{R}(1 + 2)}_{surface}$$

 Ω = roughen surface scattering factor due to wind speed

Radiometer System

Scatteromery

- Scatterometer is a radar instrument designed primarily to measure ocean vector wind (speed and direction)
- Backscatter signal is relatively insensitive to the atmosphere except for present of rain
- Basic Radar Equation:

 $\overline{P_r} = \frac{\lambda^2}{(4\pi)^3} \int \frac{P_t G^2 \sigma^0 dA}{R^4}$

$$P_r = \frac{P_t G^2 \lambda^2}{\left(4\,\pi\right)^3 R^4} \sigma$$

 σ = radar cross-section

 $\sigma^0 = \left\langle \frac{\sigma_i}{\Delta A_i} \right\rangle$ = normalized radar cross-section (NRSC)

Geophysical Model Function

- Empirical relationship between σ^0 and wind vector is known as GMF
- GMF may be modeled as two harmonic cosine functions

$$\sigma^0 = C_0(wspd) + C_1(wspd)\cos(\chi) + C_2(wspd)\cos(2\chi)$$

• GMF is also a function of incidence angle and observed polarization

Relative Wind Direction (χ)

GMF for Scat V-Pol (C_o mean removed)

GMF for Scat H-Pol (C_o mean removed)

Retrieval Algorithm

- Scatterometer requires backscatter measurements from multiple direction (fore and aft) to resolve wind direction
- Retrieval algorithm is based on maximum likelihood estimation (MLE)

$$\zeta = \sum_{i} \frac{\left(\sigma_{i}^{0} - GMF(wspd, \chi)\right)^{2}}{Variance_{\sigma_{i}^{0}}(wspd, \chi)}$$

• Require nudging and median filtering to select a unique wind vector (known as direction ambiguity removal)

ADEOS-II Satellite

• AMSR

- Dual-Polarization Multifrequency:
 - 6.9, 10.7, 18.7, 23.8, 36.5, 89.0 GHz
- incidence angle: 55°
- Integration time: 2.6 ms
- Bandwidth:100-3000 MHz

SeaWinds

- Dual-Polarization
 13.4 GHz, 110 W, 189
 PRF
- incidence angle:
 - 54° V-pol,
 - 46° H-pol
- 18 RPM
- Bandwidth: 250 kHz

Satellite data product

- AMSR
 - Overlay L2A product

- Brightness Temp. (T_B): 10, 18, 37 GHz
- Water vapor
- Cloud liquid water

76

- Rain
- SST

- Sigma-0
- L2B product
 - Wind speed
 - Wind direction

WVC

Other required data

- AMSR azimuth
 - Calculated from AMSR measurement geometry, scan radius (940 km) with WVC location
- Sea surface temperature (SST)
 - NCEP's Global Data Assimilation System (GDAS)
 - Global map generated every 6 hr.

Flight

Data Match-Ups

- AMSR and SeaWinds data were automatically collocated
- GDAS's SST match-up required additional work
 - Four point interpolation surrounding AMSR WVC's quadrants
- Average AMSR parameters into single WVC's
- All data were match-up over entire mission period of Apr - Oct, 2003
- Filtered out rain and high cloud liquid water (<0.1mm)

Binned Data Scheme

RTM Assumption

• Atmosphere is homogeneous: Temp. profile and absorption is constant

$$T_{BU} = T_{BD} = (1 - \tau)T$$

• Air/Sea temperature is the same: Effective temperature

$$T = SST = T_{eff}$$

$$T_{BU} = T_{BD} = (1 - \tau)T_{eff}$$

RTM Assumption -2

$$T_{AP} = \underbrace{T_{BU}}_{upwelling} + \underbrace{\tau R(1 + Q)}_{scattering} \underbrace{T_{BU}}_{scattering} + \underbrace{\tau T_{3}}_{scattering} + \underbrace{\tau R(1 + Q)}_{scattering} \underbrace{T_{BU}}_{scattering} + \underbrace{\tau T_{3}}_{surface} + \underbrace{\tau R(1 + Q)}_{surface} \underbrace{T_{BU}}_{scattering} + \underbrace{\tau T_{3}}_{surface} + \underbrace{\tau R(1 + Q)}_{surface} \underbrace{T_{BU}}_{scattering} + \underbrace{\tau T_{3}}_{surface} + \underbrace{\tau R(1 + Q)}_{surface} \underbrace{T_{BU}}_{scattering} + \underbrace{\tau R(1 + Q)}_{scattering} + \underbrace{\tau$$

 $upwelling = T_{BU} = (1 - \tau)T_{eff} = T_{eff} - \tau T_{eff}$

 $\begin{aligned} scattering &= \tau R T_{BD} + \tau R \Omega T_{BD} + \tau^2 R (1+\Omega) T_C \\ &= \tau R (1-\tau) T_{eff} + \tau R \Omega (1-\tau) T_{eff} + \tau^2 R (1+\Omega) T_C \\ &= \tau R T_{eff} - \tau^2 R T_{eff} + \tau R \Omega (1-\tau) T_{eff} + \tau^2 R (1+\Omega) T_C \\ surface &= \tau E \cdot SST = \tau (1-R) \cdot T_{eff} = \tau T_{eff} - \tau R T_{eff} \\ T_{AP} &= T_{eff} - R \tau^2 T_{eff} + R \tau \Omega (1-\tau) T_{eff} + R \tau^2 (1+\Omega) T_C \\ \hline T_{AP} \approx (1-R \tau^2) \cdot T_{eff} \end{aligned}$

Atmospheric cancellation

• The brightness temperature for vertical and horizontal polarization may represented as:

$$T_{BV} = (1 - R_V \tau^2) T_{eff}$$
$$T_{BH} = (1 - R_H \tau^2) T_{eff}$$

• Define a new parameter, A as a ratio of V and H-pol

$$A \equiv \frac{R_H}{R_V}$$

Changes in brightness temperature with respect to atmospheric transmissivity

$$\partial T_{BV} = -2R_V \tau T_{eff} \partial \tau$$

$$\partial T_{BH} = -2AR_V \tau T_{eff} \partial \tau$$

$$\frac{\partial (AT_{BV} - T_{BH})}{\partial \tau} = 0$$

"A" Parameter

• Linear combination of V and H brightness temperature is independent of atmosphere

$$AT_{BV} - T_{BH}$$

$$AT_{BV} - T_{BH} = A(1 - R_V \tau^2) T_{eff} - (1 - R_H \tau^2) T_{eff}$$

= $(A - 1)T_{eff} - (AR_V - R_H) \tau^2 T_{eff}$

$$A = \frac{T_{BH} - T_{eff}}{T_{BV} - T_{eff}}$$

$$T_{eff} = SST$$

"A" Parameter -2

- A parameter has Gaussian distribution
- A was found as a function of wind speed (wspd) and sea surface temperature (SST)

A parameter for 10 GHz

A parameter for 18 GHz

CFRSL

A parameter for 37 GHz

CFRSL

Model Function Procedure

- AT_{BV} - T_{BH} (AV-H) was found as a function of wind speed, wind direction and SST
- *AV-H* is model as a linear sum of each components

 $AT_{BV} - T_{BH} = F(ST) + C_{1}(WSPD) \cdot COS(\chi)$

 $+C_2(WSPD) \cdot COS(2\chi)$

• Wind directional signal modeled as two harmonic cosine function

 $F(WDIR) = C_0(WSPD) + C_1(WSPD) \cdot COS(\chi) + C_2(WSPD) \cdot COS(2\chi)$

AV-H for 10 GHz

AV-H for 18 GHz

CFRSL

AV-H for 37 GHz

CFRSL

Procedure -2

- Assume sea surface is smooth: wind speed = 0 m/s
- AV-H become a function of only SST $AT_{BV} - T_{BH} = F(SST) + C_0(WSPD) + C_1(WSPD) \cdot COS(\chi) + C_2(WSPD) \cdot COS(2\chi)$
- This initial *F*(*SST*) found from extrapolation to zero wind speed values
- Appropriate function that best describes the measurement is found

Initial F(SST)

Procedure -3

- Subtract AV-H from initial *F*(*SST*).
- Remaining AV-H become a function of wind speed and direction

$$(AV - H) - F(SST) = F(WDIR)$$

• Find regression to the measurement in the form:

 $F(WDIR) = C_0(WSPD) + C_1(WSPD) \cdot COS(\chi) + C_2(WSPD) \cdot COS(2\chi)$

First iteration F(WDIR)

Procedure -4

- The *C*'s coefficient was found for discrete values of wind speed bin
- Regression fit was found for each of the *C*'s coefficient. *F(WDIR)* is found for all wind speed values.
- Iterative process has established

(AV - H) - F(WDIR) = F(SST)

Model Equations

 $AT_{BV} - T_{BH} = F(SST) + C_0(WSPD) + C_1(WSPD) \cdot COS(\chi) + C_2(WSPD) \cdot COS(2\chi)$

		F(SST)	$C_0(WSPD)$	C ₁ (WSPD)	C ₂ (WSPD)		
	10 GHz	$a+c\cdot x+e\cdot x^{2^{**}}$	$a+c\cdot x+e\cdot x^2+g\cdot x^3$	$a+c\cdot x$ *	$a+c\cdot x+e\cdot x^{2^{*}}$		
el		$\overline{1+b\cdot x+d\cdot x^2}$	$1+b\cdot x+d\cdot x^2+f\cdot x^3$	$1 + b \cdot x + d \cdot x^2$	$\overline{1+b\cdot x+d\cdot x^2}$		
	10 CIT	**	2 3	*			
ha	18 GHz	$a+c\cdot x$	$\frac{a+c\cdot x+e\cdot x^2+g\cdot x^3}{2}$	$a+c\cdot x$	$a+c\cdot x+e\cdot x^2$		
RC		$1 + b \cdot x$	$1 + b \cdot x + d \cdot x^2 + f \cdot x^3$	$1 + b \cdot x + d \cdot x^2$	$\overline{1+b\cdot x+d\cdot x^2}$		
S							
AN A	37 GHz	$\frac{a+c\cdot x}{x}$	$\frac{a+c\cdot x+e\cdot x^2+g\cdot x^3}{2}$	$a+c\cdot x$	$a+c\cdot x+e\cdot x^{2^{*}}$		
		$1 + b \cdot x$	$1 + b \cdot x + d \cdot x^2 + f \cdot x^3$	$1 + b \cdot x + d \cdot x^2$	$\overline{1+b\cdot x+d\cdot x^2}$		
* First four points was excluded. ** Last point was excluded.							

Model Coefficients

		F(SST)	$C_0(WSPD)$	$C_1(WSPD)$	$C_2(WSPD)$
	10 GHz	a= 253.8939018	a= 0.517115747	a= -0.653431016	a= -1.395843862
		b= -0.007207942	b= -0.140174737	b= -0.042740230	b= -0.073649495
		c= -1.827465510	c= -3.734401755	c= 0.205632786	c= 0.283917140
		d= 1.3108e-05	d= 0.003843883	d= 0.001052848	d= 0.002780937
		e= 0.003314763	e= 0.787061774		e= -0.008776347
			f= 0.003616502		
			g= -0.101162061		
nnels	18 GHz	a= 234.5302360	a= -0.268136601	a= -2.095456244	a= -2.2041331797
		b= -0.003810786	b= -0.110325789	b= -0.039566361	b= -0.068904176
		c= -0.898157560	c= -3.522010565	c= 0.508449429	c= 0.501358865
Cha			d= 0.043939984	d= 0.001709247	d= 0.002615589
L N			e= -0.167645682		e= -0.017071887
1SI			f= 0.000277041		
A			g= -0.075276385		
	37 GHz	a= 193.3863684	a= 3.246690433	a= -5.056542254	a= -2.019721861
		b= -0.004205115	b= 0.139539136	b= -0.008215836	b= -0.086047248
		c= -0.907046083	c= -13.19966520	c= 1.147747275	c= 0.430587232
			d= -0.006413733	d= 0.001194255	d= 0.002842379
			e= 0.318536521		e= -0.015823182
			f= 0.000286851		
			g= -0.022678385		

Model Function for 10 GHz

Model Function for 18 GHz

Model Function for 37 GHz

Coefficient C_1

Coefficient C_2

Wind speed dependence dc

SST dependence dc

Model standard deviation

- Directional model standard deviation was found as a function of relative direction and wind speed
- Standard deviation was model the same way as the model function in the form

$$STD = C_1(WSPD) \cdot COS(\chi) + C_2(WSPD) \cdot COS(2\chi)$$

• Same regression process was repeated

Measurement Noise

Standard deviation

Standard deviation for Upwind

Wind Vector Retrieval

- Wind vectors are ideally retrievable using the model function for *AV*-H measurement and given SST
- Retrieval algorithm based on maximum likelihood estimation (MLE)

$$\zeta = \sum_{\text{freq=10,18,37GHz}} \frac{\left(AVH_{Meas} - AVH_{Model}(wspd, rel.dir, SST)_{freq}\right)^{2}}{Variance_{AVH}(wspd, rel.dir)_{freq}}$$

Wind Vector Retrieval -2

- In practice measurements standard deviations are relatively high for wspd < 9 m/s
- Wind retrieval from AV-H alone will not achieve required accuracy
- AV-H brightness may be combined with the other measurements to be able to retrieve wind vector

Combined Active/Passive retrieval

- Use favorable geometry measurements of AMSR's T_B and SeaWinds' σ^0 on ADEOS-II
- Only fore-look σ^0 measurements were used
 - Assess usability of AV-H model function
 - Simplifies instrument design
 - Adds two feed and electronics to multi-channel conical scanning radiometer
- Given SST available from GDAS, and known wind speed retrieved from SeaWinds scatterometer

Wind speed transfer function

CFRSL

Active/Passive Algorithm

 $\chi = azimuth - direction$

Wind direction ambiguities

- Wind direction solution is not unique caused by biharmonic nature of the model functions
- Wind direction solutions were kept up to four and ordered according to the inverse values of MLE
 - i.e. 1st ranked solution corresponds to minimum MLE value, 2nd ranked is the second minimum, ...
- Of these ambiguities, only one of the solutions is the "correct" wind direction

Measurements residual

Measurements residual (normalized)

Wind Retrieval Comparison

Active/Passive Retrievals

- For best case scenario, ambiguities were compared to the known surface truth and the closest direction solution was selected
- GDAS was used as the surface truth (independent source)

Active fore-look

• Wind direction comparisons were also made for the "closest" solution retrieved without using passive AV-H measurements

Closest Ambiguity Comparison

Closest solutions comparison

Wind Speed	Number of Points	Closest Ambiguities: Standard Deviation Error		
(meter/sec)		Passive + fore-look Scat	Only fore-look Scat	
5	337493	20.8°	14.1°	
7	441818	23.6°	10.8°	
9	309717	17.4°	9.0°	
12	99563	17.5°	9.0°	
15	33520	17.1°	9.5°	
20	1680	19.1°	13.7°	

Current scatterometer is capable of wind speed measurement of 3-20 m/s

- wind speed accuracy: 2 m/s
- wind direction accuracy: 20°

Instrument Skill

- The instrument skill is a metric to determine the performance of the wind ambiguity removal based upon ambiguity ranking
- The higher the probability that 1st ranked solutions are the closest solution, the greater the skill of the instrument
- Usually in four-look scatterometry, the 1st and 2nd ranked solutions are the most probable closest wind vector

Skill Comparison

Wind Speed (meter/sec)	Closest Ambiguity Ranking							
	Passive + fore-look Scat				Only fore-look Scat			
	1 st	2^{nd}	3 rd	4^{th}	1^{st}	2^{nd}	3 rd	4 th
5	30 %	35 %	23 %	13 %	26 %	30 %	29 %	15 %
7	30 %	34 %	23 %	13 %	22 %	27 %	32 %	18 %
9	30 %	37 %	27 %	6 %	25 %	27 %	33 %	15 %
12	61 %	28 %	10 %	1 %	50 %	30 %	13 %	7 %
15	82 %	15 %	2 %	1 %	63 %	29 %	5 %	3 %
20	91 %	9 %	0 %	0 %	69 %	25 %	2 %	4 %

Skill Comparison

Wind Speed (meter/sec)	Closest Ambiguity Ranking							
	Passive + fore-look Scat				Only fore-look Scat			
	1 st	2^{nd}	3 rd	4^{th}	1^{st}	2^{nd}	3 rd	4 th
5	30 %	35 %	23 %	13 %	26 %	30 %	29 %	15 %
7	30 %	34 %	23 %	13 %	22 %	27 %	32 %	18 %
9	30 %	37 %	27 %	6 %	25 %	27 %	33 %	15 %
12	61 %	28 %	10 %	1 %	50 %	30 %	13 %	7 %
15	82 %	15 %	2 %	1 %	63 %	29 %	5 %	3 %
20	91 %	9 %	0 %	0 %	69 %	25 %	2 %	4 %

Active/Passive Skill Improvement

Wind Speed	Skill improvement	Standard deviation			
(m/s)	(1 st and 2 nd rank combined)	Only fore-look Scat	Passive + fore-look Scat		
5	9 %	14.1 °	20.8 °		
7	15 %	10.8 °	23.6 °		
9	15 %	9.0 °	17.4 °		
12	9 %	9.0 °	17.5 °		
15	5 %	9.5 °	17.1 °		
20	6 %	13.7 °	19.1 °		

STRSL CERSL

Conclusion

- Linear combination of vertical and horizontal brightness temp. (*AV-H*) is a function of only surface parameters
 - A is a f(Freq, pol, SST and wind speed)
 - Effects of atmosphere cancel
 - Large DC bias is f(Freq, pol, SST and wind speed)
- Empirical relationship between AV-H and surface parameter is defined for wind vector and SST.

Conclusion -2

- Measurement noise (deltaTb) dominantes over wind directional signal for wind speed < 9 m/s
 - May prevent wind retrieval using passive measurement alone
- Combined active and passive has been investigated with fore-look geometry
 - Closest ambiguity shows that retrieval achieves wind direction accuracy of < 20 $^\circ$
 - However, wind direction accuracy degrades compared to closest fore-look active measurement alone
 - But, instrument skill is higher (than using fore-look active measurement alone)

List of Conf. Publications

- Jones, W.L., Soisuvarn, S., Kasparis, T., and Ahmad, S., "Combined Active And Passive Microwave Sensing Of Ocean Surface Wind Vector From TRMM", AGU Spring Meeting, May 28-31, 2002, Washington, DC
- Jones, W. L., Soisuvarn, S., Kasparis, T., Ahmad, S. and R. Meneghini, "Ocean Surface Wind Speed Measurements Using The TRMM Precipitation Radar", International Tropical Rainfall Measuring Mission (TRMM) Science Conference, Jul 22-26, 2002, Honolulu, HA.
- Soisuvarn, S., Jones, W. L. and T. Kasparis, "Combined Active And Passive Microwave Sensing Of Ocean Surface Wind Vector From TRMM", Oceans '02 MTS/IEEE, Oct 29-31, 2002, Biloxi, MS.
- Soisuvarn, S., Jones, W. L. and T. Kasparis, "Combined Active And Passive Microwave Sensing Of Ocean Surface Wind Vector From TRMM", IGARSS '03, Jul 21-25, 2003, Toulouse, France.
- Soisuvarn, S., Jones, W. L. and T. Kasparis, "Validation Of Ocean Surface Wind Vector Sensing Using Combined Active And Passive Microwave Measurement", IGARSS '04, Sep 20-24, 2004, Anchorage, AK.

List of Conf. Publications -2

- Soisuvarn, S., Jones, W. L., T. Kasparis, "Ocean Surface Wind Vector Retrievals Using Active And Passive Microwave Sensing On ADEOS-II", IGARSS '05, Jul 25-29, 2005, Seoul, Korea
- Jones, W. L., and S. Soisuvarn, "A Novel Active and Passive Microwave Remote Sensing Technique for Measuring Ocean Surface Wind Vector", Oceans '05 MTS/IEEE, Sep 18-23, 2005, Washington, DC
- Soisuvarn S., Jones, W. L, and Z. Jelenak, "A Novel Oceanic Wind Vector Measurement from ADEOS-II using Combined Active and Passive Microwave Techniques", AGU Joint Assembly, Baltimore, Maryland, 23-26 May 2006
- Soisuvarn S., Jones, W. L, and Z. Jelenak, "Development of Oceanic Wind Vector Model Function for AMSR Radiometer on ADEOS-II Satellite", Proc. IEEE IGARSS-06, Aug. 28 - Sept. 1, 2006, Denver, CO.

Refereed Publications

- W. Linwood Jones, Jun D. Park, Seubson Soisuvarn, Liang Hong, Peter Gaiser and Karen St. Germain, "Deep-Space Calibration of WindSat Radiometer", *IEEE Trans. GeoSci. Rem. Sens.*, Vol. 44, NO. 3, Mar 2006
- S. Soisuvarn, Z. Jelenak and W. L. Jones, "An ocean surface wind vector model function for a spaceborne microwave radiometer," IEEE Trans. Geosci. Remote Sensing (submitted Sept 2006; under peer review)

